Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Objective: Minimize $C = 50l + 30w + 2 \cdot 30w = 80l + 60w$.

Problem: Design a fence to enclose a rectangular region of area 1200 m². Material for one edge (facing the street) costs \$50 per meter while material for the other three edges costs \$30 per meter.

Objective: Minimize $C = 50l + 30w + 2 \cdot 30w = 80l + 60w$.

Constraint: Need lw = 1200.

$\mathsf{Method}\ 1$

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

 $I = \frac{1200}{w}$

$$I = \frac{1200}{w}$$
 so $C = 80I + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$

$$l = \frac{1200}{w} \quad \text{so} \quad C = 80l + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$$

Compute $C' = -\frac{96000}{w^2} + 60.$

$$I = \frac{1200}{w} \quad \text{so} \quad C = 80I + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$$

Compute $C' = -\frac{96000}{w^2} + 60.$

Solve
$$-\frac{96000}{w^2} + 60 = 0$$
 to get $w = \pm 40$.

$$I = \frac{1200}{w}$$
 so $C = 80I + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$

Compute
$$C' = -\frac{96000}{w^2} + 60.$$

Solve
$$-\frac{96000}{w^2} + 60 = 0$$
 to get $w = \pm 40$.

Use
$$w = 40$$
 to get $I = \frac{1200}{40} = 30$

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

$$l = \frac{1200}{w} \text{ so } C = 80l + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.$$

Compute $C' = -\frac{96000}{w^2} + 60.$
Solve $-\frac{96000}{w^2} + 60 = 0$ to get $w = \pm 40.$

Use
$$w = 40$$
 to get $I = \frac{1200}{40} = 30$

So build fence with expensive edge of length 30 meters and other dimension of 40 meters.

DQ P

 \equiv

DQC2

100 80 60 w 40 20 0 20 40 60 80 100 Constraint curve A = lw = 1200Level curves for objective C = 80I + 60wGradient vectors for constraint A = lwGradient vectors for objective C = 80I + 60w・ 同ト ・ ヨト ・ ヨト

DQC2

-

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

objective level curve is tangent to constraint curve

objective level curve is tangent to constraint curve $\bigoplus_{i=1}^{n}$ objective gradient $\vec{\nabla}C$ is aligned with constraint gradient $\vec{\nabla}A$

